ME3000-V

2M LINEAR AMPLIFIER
GU78B

Mechanics & Electronics Inc. Hungary
Draskovits Gábor HA1YA Szombathely, Kárpáti K. u. 43. H-9700
e-mail: halya@chello.hu halya@w-nets.hu
ATTENTION!
Please read this manual carefully before operating the equipment!
The Linear Amplifier is easy to use, and damages can be avoided by following the instructions stated below. Incorrect use may cause the loss of warranty.

1.0 GENERAL OVERVIEW

The Linear Amplifier is produced by M+E Mechanics & Electronics Inc. During the design of the ME series, the main point was to construct Linear Amplifiers for HF, VHF, and UHF amateur bands with similar mechanical measures and appearance, using ceramic valves easily available on the market.

The ME 2500 and 3000-V utilises the advantage of the valve GU84B and GU78B, and considering the power output and price, is a worthy competitor of similar equipment on the market. The Amplifiers are protected by modern circuits, specially designed and used only by our company, providing a very high level of protection. With their low input power and high efficiency they fulfil the requirement of an improved amateur station.

To use the Amplifier with satisfaction and utilising all its advantages, please read the following general instructions carefully:

1.1 Do not use higher driving power as given in the instruction manual. During SSB transmission the 'MIC GAIN' control of the TCVR is not fit for the TCVR is regularly activating the protection of the Linear.
In case of lately designed equipment the output power of the TCVR is control of the radio.

1.2 The SWR protection of the Linear is inactive during STBY mode.
In case the VSWR > 1:2 in QRO mode, the protection is active.

1.3 The required power supply input is 230V 50/60 Hz or 400V 50/60 Hz between two phase according to the EU standard. Verify that the rating of the line fuses located in the rear panel of power supply in fuse holders is suitable for the AC line voltage you will be using. The fuse should be the glass cartridge slo-blow type. The rating should be 25 Ampere by 230V AC, 16 Ampere by 400 V AC.

1.4 The Amplifier is constructed with a forced air cooling. Free air movement has to be provided and considered during positioning.
Do not operate the Amplifier in excessively warm locations or near heating vents or radiators. Be sure air can circulate freely around and through the Amplifier cabinet, and can provide an unobstructed air inlet for the internal cooling fan. Do not place any books, magazines, manuals, or equipment that will impede the free flow of air near the sides and the hot air exhaust holes located on the top of the cabinet. The internal fan allows an air flow of approximately 200m³/hours. The exhaust air becomes quite warm at high power levels. Do not position any heat-sensitive objects in the exhaust airflow path.
1.5 The PA is constructed with the following protection circuits and useful features:
 - Heat up time checking circuit (3min)
 - Protection circuits (Ia, Ig1, Ig2, temperature, SWR>3, ext.)
 - Cooling fan 250m3/h, 230V, 60W.
 - Function and status indicator LEDs (6 pcs)
 - 4.5KVA transformer
 - OPTO coupled PTT switch
 - Built in I/O coax relays
 - External HV power supply (ME2500-S, ME3000-S)
2.0 SPECIFICATIONS

ME3000-V

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency coverage</td>
<td>144-146MHz</td>
</tr>
<tr>
<td>Operating modes</td>
<td>ALL mode</td>
</tr>
<tr>
<td>Output Power</td>
<td>3000 W pep min. CW/SSB</td>
</tr>
<tr>
<td>Driving Power</td>
<td>0-40W max.</td>
</tr>
<tr>
<td>Input VSWR</td>
<td>max 1:1.5</td>
</tr>
<tr>
<td>In/Out impedance</td>
<td>50 Ohm</td>
</tr>
<tr>
<td>Valve(s)</td>
<td>GU78B</td>
</tr>
<tr>
<td>T/R System</td>
<td>opto 24V/8mA OPEN COLL. OK</td>
</tr>
<tr>
<td>Harmonic supression</td>
<td>>50dB at 2500W RF out</td>
</tr>
<tr>
<td>Intermodulation</td>
<td>>35dB at 2500W RF out</td>
</tr>
<tr>
<td>Protection</td>
<td>Ia > 1.5A</td>
</tr>
<tr>
<td></td>
<td>Ig1 > 20mA</td>
</tr>
<tr>
<td></td>
<td>Ig2 > 40mA</td>
</tr>
<tr>
<td></td>
<td>Temp > 75°C</td>
</tr>
<tr>
<td></td>
<td>VSWR > 2</td>
</tr>
<tr>
<td>Dimension</td>
<td>19X14X14 coll</td>
</tr>
<tr>
<td>Weight</td>
<td>22kg</td>
</tr>
</tbody>
</table>
3.0 TECHNICAL DESCRIPTION

1. GENERAL
RF deck of this amplifier is built in aluminium compartment which must be electrically tight to avoid RF radiation. RF radiation will decrease output power and can cause self oscillation of the transmitter chain as well as a health risk. We can build in normal 19” “box” version the line ME3000.

2. INPUT CIRCUIT
Tube is driven in grid 1 with grounded cathode. Grid 1 is loaded with 200 ohm RF power resistor in order to decrease gain end increase stability factor. Loading resistor is connected on the “way” between grid 1 and resonance tuning capacitor of the matching circuit due to this parasitic inductance of the tube plus tube socket. The input circuit is working between 144-146 MHz without external tuning. The input SWR is better than 1:1.5 in this segment.

3. OUTPUT CIRCUIT
Output resonator is based on W6PO design. Tuning for resonance should be done by changing length of two resonators rather than increasing C5 tuning capacitor. The output capacitor value is about 3-4 pF. Tune is very easy to maximum output.

4. COOLING
Cold air inlet is located in the input compartment. We can deliver the PA with internal or external fan. Air flows through over the cathode box and across the tube body and anode cooling fins. Hot air outlet is located above the tube anode cooling fins. The protection circuit will work over 75 deg air temperature.

5. TUNING THE AMPLIFIER
Tuning the input resonance circuit should be done using VSWR meter connected between driver and input. Output coupling capacitor should be set as on the schematic to about 4pF. Output you can indicate across the built in power meter. /FWD knob in/ The output is 3KW in right end of the meter. /10x scale/ All was made by the factory /

Before any high voltage will applied to the tube, tube should be run on heater for several hours especially if the tube wasn’t use for long time. From this point of time, cooling must be operational.

Having heater voltage connected to the tube without adequate cooling will damage the tube.
The anode voltage should be applied from your external high voltage supply ME 3000-S and idle conditions of the amplifier checked. Push the PTT and you can see about 150mA on left meter. When you have more than this value, you can adjust for this value with P1 poti on UG1 stabilizer PCB. /On case you use home brew HV supply with lower or larger Ua voltage than 2500V on case ME2500-V and 3500Von case ME3000-V.
3/a FRONT PANEL

1. POWER ON
 Main switch of the equipment is on the power supply (ME2500/3000-S).

2. ON LED
 The LED indicator glows when the Linear is switched on. Doesn’t lit in case the 24V DC – supply for the protection circuits and antenna switch - is missing.

3. OVR LED
 The blinking LED indicates the active stage of the protection circuit. The protection might be active due to overdrive, IG1 higher as specified, SWR > 3, or any other case. (See specifications)
 If the protection is active, the TCVR power by-pass the PA. To reset the protection release the STBY button, than push it again. The reason of the trouble has to be cleared first.

4. AIR LED
 The indicator glows while transmitting and the T/R relay is switched on. Without driving power the PLATE meter indicates the base current of the PA.

5. OPR LED
 Glows when the PA is ready for transmission. During heating up period, when the LED doesn’t lit, the driving is blocked. The stby time is about 180 sec.

6. WAIT LED
 Blinking during the heating up period, indicating that the heating is in progress. Required time is abt. 180 sec, when the light goes out and the OPR led lit up.

7. QRO LED
 Indicates the high power mode of the PA. Can be activated by the STBY/OPR switch on front page. In case the OPR mode is not active, only the TCVR power is on the aerial. (Small PWR STBY mode)

8. Ua PUSHBUTTON
 Selects the anode voltage (kV) indication on the POWER meter using the PLATE scale. There is only one way selection between Ua - Ig2 pushbuttons.

9. Ig1
 The current of the grid (Ig1) can be checked. Current limit is 20 mA, when the protection is activated.
10. FWD
 Output power indication. Used for tuning the Linear. The indication calibrated for 50 ohm aerial impedance.
 At other values the accuracy may be +- 10%.

11. REV
 Will indicate the relative reflected power on the right side meter. Helps to check the aerial.

12. Ig2
 The concerning grid current can be checked (max 50mA).

13. STBY
 The PA can be driven only if this button is on OPR, otherwise the TCVR power by-passes the PA. In case the overload protection is active, release the switch and push it again.

14. PLATE meter
 Indicates always the anode current of the PA. The green mark is the limit for the base current, while the red shows the maximum allowable current.

15. POWER meter
 Multifunctional meter. Forward or reflected power, anode voltage or grid current indications can be selected.

16. TUNE knob
 Tuning knob of the anode cavity. Use for tuning the PA.
3/b REAR PANEL

1. Remote connector
 Connecting with short cable to ME2500-S or to ME3000-S power supply.

2. FAN 1
 Cooling fan for the RF tube (230V/AC)

3. PTT
 Connection for PTT RCA. The relays are closed by earth connection. Low voltage, low current opto entry. Fit for open collector control a well (24V 10mA).

5. INP
 Input connection for the driver TCVR. 50 Ohm.

6. OUT
 Aerial connection 50 Ohm (“7/16” connector).

7. GND
 Ground connection.

8. 5PIN tuchel connector
 Connect to external units, preamplifier, etc....
4.0 INSTALLATION

4.1 Connect your TCVR to the Linear using a short, 50 Ohm coaxial cable.

4.2 Connect your TCVR ground giving connector to the PTT RCA connector on the rear panel of the Linear, using a screened cable.
 In case your TCVR has an open collector PA controller output, you can use it without difficulties. The input of the PA PTT is 24V 10mA.

4.3 Connect your aerial to the OUT socket of the Linear. VSWR must be better than 1:2.

4.4 Using a flexible cable at least 6mm\(^2\), connect your PA to a suitable grounding point and to the grounding point of the transceiver, and to ME3000-S HV power supply.

4.5 Connect the power cord to the mains and switch on the equipment (ME3000-S).
 Check before the exact input voltage of the ME3000-S (230 or 400V AC!). The ON LED glows and the WAIT led start blinking for a period of abt. 180 sec, during the heating period.
 The readiness of the Linear is indicated by the OPR LED. If the PA was out of use for a longer period (2-3 month), it would be advisable to keep the PA heated without driving for a few hours. The control unit switch the high voltage to linear, when the OPR LED lits. The vacuum relay can switch the HV only on case if you connected the HV cable to linear!

4.6 Using the tuning mode of the TCVR (CW) give driving power to reach 300-400 mA indication on the PLATE meter. Push the FWD button and with the Tune knob tune the Linear to reach maximum output power indication. Increase the driving power until maximum anode current, than carry out fine tuning using the Tune knob again. In case a 50 Ohm aerial, the power meter will indicate the output power exactly.

REMEMBER THIS AMPLIFIER DOES NOT REQUIRE MUCH DRIVE POWER. SO START WITH LOW DRIVE POWER, AND THEN TUNE TO RESONANCE AS OUTLINED ABOVE. OTHERWISE, ARCING MAY OCCUR INSIDE YOUR AMPLIFIER.
NEVER RUN YOUR AMPLIFIER FOR ANY SUSTAINED PERIOD WITH A SCREEN CURRENT READING GREATER THAN SPECIFIED. IF YOU DO, POSSIBLE DAMAGE AND FAILURE OF THE TUBE(S) WILL RESULT, AND THEY WILL NOT BE COVERED BY WARRANTY!

4.7 Check the grid 1 current using the Ig1 push-button. Reduce the driving power or make fine tuning in case the grid current would exceed THE SPECIFIED VALUE! Check the G2 current with G2 pushbutton.
4.8 During SSB transmission the peak power of the TCVR may exceed the allowed maximum driving power of the transceiver! Use The POWER knob on the TCVR in this case.

4.9 You can not switch the Amplifier to transmission if Ua, UG2, or UG1 voltage is missing (You can control these voltages on LEDs of control unit.)

4.10 You can use for external units the TX-GND and RX-GND contacts of G2 stabilizer PCB. The delay is 100mSec from RY1 input relay.
Malfunctions are mostly due to improper handling, overload or similar reason.

5.1 Do not use higher input power as stated in the specification. The grid protector circuit will usually safe the power valves, but OVERLOAD alarm will appear regularly. This may happening often in SSB mode, especially in case of old transceivers, when the output power in SSB mode is not adjustable. The ‘MIC GAIN’ knob is not fit for power reduction!

5.2 INPUT SWR
The input SWR of the Linear is < 1:1.2. A well adjusted TCVR will tolerate these values without any trouble.

5.3 OUTPUT SWR
The protection of the Linear will block the transmission in case the SWR of the aerial exceed 1:2.

5.4 FAILURES
- The PA not turn on, nothing happens ON switch is pushed.
 - External AC wiring, fuse or circuit breaker may be open.
 - Amplifier power cable not in place - cover safety interlock open.
 - Fuse F1, F2, F3, F4 open or missing - check fuses with an ohmmeter.

- The PA turns on but no HV is indicated on meter.
 - Possible HV circuit fault.
 - HV sampling resistor in power supply damaged.
 - The HV cable is not on his connector.
 - The OPR LED not lits.

- No base current when you push the PTT (about 150 mA on meter).
 - Not Ua, Ug2 or Ug1 voltage.
 - Check fuses on Ug2 and Ug1 board, check both stabilizer board. (Bottom side of PA)
- The base current is too low or too high.
 - Check the Ig1 and Ig2 voltage on his PCB boards. (-Ug1 approx. -65V, Ug2 must be 295V) You can set the base current on minor PCB of Ug1 stabilizer panel.

- You can indicate Ip current on meter when drive PA but no output power.
 - Check the output coaxial relay.
5.5 LIMITED WARRANTY

The M+E Mechanics & Electronics will warrant that the equipment will perform substantially in accordance with the written materials for a period of 12 months from the date of receipt and will be free from defects in material and workmanship under normal use. This Limited Warranty is void if failure of the equipment has resulted from accident or misapplication, any kind of modification done, overvoltage, shipping, and in case the damage of the power valves.

Warranty repairs done only on the base of the M+E Mechanics & Electronics. Return cost will be covered by the owner.

5.6 ALWAYS THINK - SAFETY

THIS LINEAR AMPLIFIER DESCRIBED IN THIS MANUAL CONTAINS VOLTAGE HAZARDOUS TO HUMAN LIFE AND SAFETY WHICH IS CAPABLE OF INFlicting PERSONAL INJURY. NEVER OPERATE THE AMPLIFIER WITH THE TOP COVER REMOVED AND THE TOP COVER SAFETY SWITCH DEFEATED. BEFORE REMOVING THE TOP COVER MAKE SURE THE AC LINE POWER CORD HAS BEEN DISCONNECTED FROM THE AC POWER SOURCE. ALLOW A MINIMUM OF 5 MINUTES TO ELAPSE BEFORE REMOVING THE TOP COVER AFTER POWER HAS BEEN REMOVED. THIS IS NECESSARY TO ALLOW THE PLATE VOLTAGE FILTER CAPACITORS TO BLEED DOWN TO A SAFE LEVEL.

Before operating this unit ensure that the protection conductor (green/yellow wire) is connected to the ground (earth) protective conductor of the power outlet. Do not defeat the protective features of the third protective conductor in the power cord by using a two conductor extension cord or a three-prong/two-prong adapter.

Before operating this unit:

1. Ensure that the instrument is configured to operate on the voltage available at the power source. (See Installation Section)

2. Ensure that the proper fuses are in place in the amplifier's AC line fuse holders located on the rear panel.

3. Ensure that all other devices connected to or in proximity to this amplifier are properly grounded or connected to the protective third-wire earth ground.

If at any time the amplifier shows visible damage, has sustained stress, emits a foul smell, fails to operate satisfactorily, it should not be used until its performance has been checked by qualified service personnel.

Connect a good earth or water pipe ground to the ground post on the rear of the Amplifier. Use the heaviest and shortest connection possible. Before you use a water pipe ground, inspect the connections around your water meter and make sure that no plastic or rubber hose connections are used. These connections interrupt the continuity to the water supply line. Install a jumper around any insulating water connectors you may find. Use heavy copper wire and pipe clamps.

It is best to ground all equipment to one point at the operating position and then ground this point as described above.
5.7 SAFETY INTERLOCK SWITCH

While the Amplifier's top cover is in place, the interlock switch closes to allow AC line voltage to reach the power transformer. When the top cover is removed, the interlock switch opens and disconnects the line voltage. This does not discharge the bank of power supply filter capacitors. Be sure to allow the filter capacitors to discharge before you touch anything inside the Amplifier. You can select the High Voltage function of the Multimeter to check the high voltage potential.